KILLER ACQUISITIONS

Colleen Cunningham[†] Florian Ederer[‡] Song Ma[‡]

[†]London Business School [‡]Yale School of Management

Autoridade da Concorrência Webinar

KILLER ACQUISITIONS

► The idea:

Overview

- ► Market incumbents have incentives to acquire and "kill" innovative targets
- ▶ Preempt the "gale of creative destruction" to protect existing profits

► Theoretical framework:

- ▶ Setting: a simple model of acquisition, innovation, and competition
- ► Killer acquisitions can be optimal for incumbents

► Empirical evidence:

- ► Setting: acquisition and drug development (1989-2010)
- ▶ Evidence: test for existence and pervasiveness of "killer acquisitions"

Do "Killer Acquisitions" Exist? FTC Against Mallinckrodt (Questcor)

- "By acquiring Synacthen, Questcor harmed competition by preventing another bidder from trying to develop the drug ... to challenge Questcor's monopoly over ACTH drugs."
- "Questcor has extinguished a nascent competitive threat to its monopoly."

Do Killer Acquisitions Occur Elsewhere?

FTC to Examine Past Acquisitions by Large Technology Companies

Agency Issues 6(b) Orders to Alphabet Inc., Amazon.com, Inc., Apple Inc., Facebook, Inc., Google Inc., and Microsoft Corp.

SHARE THIS PAGE

February 11, 2020

Well, Don't We Already Know...

0000000000

Empirical Design & Results

Overview

000

▶ ... that acquisitions can be anti-competitive?

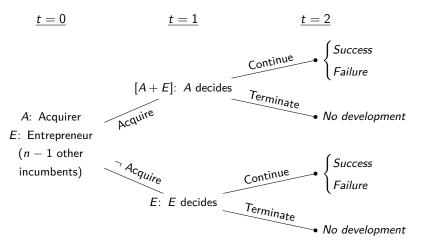
- Yes! Mostly focusing on horizontal mergers of existing products and pricing implications—ignoring innovation.
- ▶ We argue that anti-competitive acquisitions can happen pre-market.

Overview

0000

Well, Don't We Already Know...

... that acquisitions can be anti-competitive?


- ► Yes! Mostly focusing on horizontal mergers of **existing products** and **pricing implications**—ignoring innovation.
- ▶ We argue that anti-competitive acquisitions can happen pre-market.

... about cannibalization and innovation?

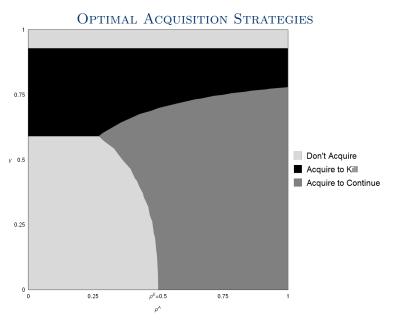
- ➤ Yes! Arrow's (1962) famous "replacement effect" shows that incumbents are disincentivized to **conduct internal R&D**.
- ► We argue that disincentives to innovate are more extreme and incumbents may acquire to kill innovation.

THEORETICAL FRAMEWORK

SETUP AND TIMELINE

Intuition

- ▶ Development decision (t = 1)
 - ► Entrepreneur has stronger incentive to continue project ...
 - ▶ ... because successful development cannibalizes incumbent's profit
 - ▶ Difference larger if little existing or future competition


Intuition

- ▶ Development decision (t = 1)
 - ► Entrepreneur has stronger incentive to continue project ...
 - because successful development cannibalizes incumbent's profit
 - Difference larger if little existing or future competition
- Incumbent's economic trade-off at acquisition (t=0)
 - Acquiring the entrepreneur is costly (pay endogenous P), but ...
 - ... it prevents competition and business stealing relative to successful development by the entrepreneur
 - ▶ Replacement (Arrow 1962) vs efficiency (Gilbert & Newbery 1982) effect

Intuition

- ightharpoonup Development decision (t = 1)
 - Entrepreneur has stronger incentive to continue project ...
 - because successful development cannibalizes incumbent's profit
 - Difference larger if little existing or future competition
- Incumbent's economic trade-off at acquisition (t=0)
 - Acquiring the entrepreneur is costly (pay endogenous P), but ...
 - ... it prevents competition and business stealing relative to successful development by the entrepreneur
 - ▶ Replacement (Arrow 1962) vs efficiency (Gilbert & Newbery 1982) effect
- ► Theoretical takeaways: Killer acquisitions
 - ► Can arise as an optimal strategy for incumbents
 - Particularly when products overlap and current/future competition is low

ROBUSTNESS AND EXTENSIONS

- Incumbent development advantages
 - Additional motive for acquisition and development
 - ► Killer acquisitions exist even when incumbent advantages are large

- Incumbent development advantages
 - Additional motive for acquisition and development
 - ▶ Killer acquisitions exist even when incumbent advantages are large
- Vertical differentiation
 - ► Allow new product to be superior to existing products
 - ► No qualitative changes to results

- Incumbent development advantages
 - Additional motive for acquisition and development
 - ▶ Killer acquisitions exist even when incumbent advantages are large
- Vertical differentiation
 - ▶ Allow new product to be superior to existing products
 - ► No qualitative changes to results
- ► Multiple bidders
 - Freeriding incentive exists (auction with externalities)
 - But acquisitions are more likely

- Incumbent development advantages
 - Additional motive for acquisition and development
 - ▶ Killer acquisitions exist even when incumbent advantages are large
- Vertical differentiation
 - ▶ Allow new product to be superior to existing products
 - ► No qualitative changes to results
- Multiple bidders
 - Freeriding incentive exists (auction with externalities)
 - But acquisitions are more likely
- Asymmetric bidders
 - ▶ Will the least differentiated incumbent acquire?
 - ► Has highest acq'n value (with synergy more diff'd firm may acquire)

Main Conceptual Tests

- ► Test #1: Existence
 - ▶ Termination is more likely when incumbent and target products overlap.

Main Conceptual Tests

- ► Test #1: Existence
 - ► Termination is more likely when incumbent and target products overlap.
- ► Test #2: Existing Competition
 - ... is more likely when products overlap and there is little competition.

- ► Test #1: Existence
 - ► Termination is more likely when incumbent and target products overlap.
- ► Test #2: Existing Competition
 - ... is more likely when products overlap and there is little competition.
- ► Test #3: Patent Protection (Future Competition)
 - ... is more likely when products overlap and patent further from expiry.

► Test #1: Existence

- ► Termination is more likely when incumbent and target products overlap.
- ► Test #2: Existing Competition
 - ... is more likely when products overlap and there is little competition.
- ► Test #3: Patent Protection (Future Competition)
 - ... is more likely when products overlap and patent further from expiry.
- ► Test #4: Acquisition Motives
 - ► Acquisition is more likely when products overlap.

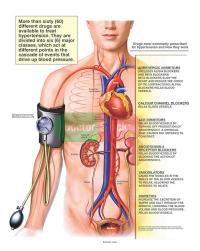
Main Conceptual Tests

- ► Test #1: Existence
 - ► Termination is more likely when incumbent and target products overlap.
- ► Test #2: Existing Competition
 - ▶ ... is more likely when products overlap and there is little competition.
- ► Test #3: Patent Protection (Future Competition)
 - ... is more likely when products overlap and patent further from expiry.
- ► Test #4: Acquisition Motives
 - Acquisition is more likely when products overlap.
- ► Empirical challenges
 - ► Projects and their development decisions
 - ► Market overlap and competition

EMPIRICAL DESIGN & RESULTS

Data Sources and Sample Structure

- ▶ Drug development record from Pharma Intelligence
 - ▶ 16,000+ drug development projects between 1989 and 2010
 - ▶ From origination to outcome, including clinical trial information
- ► Project-level profile
 - ► Chemical structure, therapeutic and mechanism of action
 - Drug patent and human capital obtained from USPTO data
- Acquisition data
 - ▶ SDC Platinum, Thomson Reuters Recap IQ (now Cortellis), VentureXpert
 - ► Each source is important in our final dataset


- Dependent variables
 - ▶ Pharmaprojects: development, termination, and neutral events
 - ► FDA clinical trials: trial phase progression
- ► Independent variables
 - ▶ Need to measure the degree that new innovation affects incumbents
 - ► This is difficult in general: demand, preferences, etc.
- ► Measurement: exploiting market delineations in the pharma industry
 - ► Same target market: the same therapeutic class (TC)
 - ► Similar technology: the same mechanism of action (MOA)

EXAMPLE FOR OVERLAP

0000000000

Empirical Design & Results

- ► 1 Therapeutic class: Hypertension, or Antihypertensives
- ► 6 Mechanism of Actions: how can we treat hypertension?
 - Adrenergic Inhibitors
 - Calcium Channel Blockers
 - ACE Inhibitors
 - ► Angiotensin II Receptor Blockers
 - Vasodilators
 - Diuretics

	${\sf Development}\ {\sf Event}=1$			
	(1)	(2)	(3)	(4)
$I(Acquired) \times I(Post) \times Overlap$	-0.037*** (0.013)	-0.033** (0.014)	-0.029* (0.015)	-0.041** (0.019)
I(Acquired) × I(Post)	-0.020***	-0.016**	-0.017**	-0.024**
	(0.006)	(0.007)	(0.009)	(0.010)
I(Acquired) × Overlap	0.004	0.009	0.026**	
	(0.008)	(0.009)	(0.011)	
I(Acquired)	-0.002	-0.004	-0.011	
	(0.004)	(0.005)	(0.012)	
Observations	143,569	143,569	143,569	143,569
R-squared	0.038	0.256	0.294	0.370
Vintage FE	Υ	Υ	Υ	Υ
Age FE	Υ			
Age FE X Therapeutic Class X MOA		Υ	Υ	Υ
Originator [Target Company] FE			Υ	
Project FE				Υ

	${\sf Development\ Event} = 1$			
	(1)	(2)	(3)	(4)
$I(Acquired) \times I(Post) \times Overlap$	-0.037***	-0.033**	-0.029*	-0.041**
	(0.013)	(0.014)	(0.015)	(0.019)
$I(Acquired) \times I(Post)$	-0.020***	-0.016**	-0.017**	-0.024**
	(0.006)	(0.007)	(0.009)	(0.010)
$I(Acquired) \times Overlap$	0.004	0.009	0.026**	
	(800.0)	(0.009)	(0.011)	
I(Acquired)	-0.002	-0.004	-0.011	
	(0.004)	(0.005)	(0.012)	
Observations	143,569	143,569	143,569	143,569
R-squared	0.038	0.256	0.294	0.370
Vintage FE	Y	Y	Υ	Υ
Age FE	Y			
Age FE X Therapeutic Class X MOA		Υ	Υ	Υ
Originator [Target Company] FE			Υ	
Project FE				Υ

Main Result: Project Development Post Acquisition

	${\sf Development}\ {\sf Event}=1$			
	(1)	(2)	(3)	(4)
$I(Acquired) \times I(Post) \times Overlap$	-0.037***	-0.033**	-0.029*	-0.041**
	(0.013)	(0.014)	(0.015)	(0.019)
$I(Acquired) \times I(Post)$	-0.020***	-0.016**	-0.017**	-0.024**
	(0.006)	(0.007)	(0.009)	(0.010)
$I(Acquired) \times Overlap$	0.004	0.009	0.026**	
	(0.008)	(0.009)	(0.011)	
I(Acquired)	-0.002	-0.004	-0.011	
	(0.004)	(0.005)	(0.012)	
Observations	143,569	143,569	143,569	143,569
R-squared	0.038	0.256	0.294	0.370
Vintage FE	Υ	Υ	Υ	Υ
Age FE	Y			
Age FE X Therapeutic Class X MOA		Υ	Y	Υ
Originator [Target Company] FE			Y	
Project FE				Υ

	${\sf Development}\ {\sf Event}=1$			
	(1)	(2)	(3)	(4)
$I(Acquired) \times I(Post) \times Overlap$	-0.037***	-0.033** (0.014)	-0.029* (0.015)	-0.041** (0.019)
$I(Acquired) \times I(Post)$	(0.013) -0.020***	-0.016**	-0.017**	-0.024**
I(Acquired) × Overlap	(0.006) 0.004	(0.007) 0.009	(0.009) 0.026**	(0.010)
I(Acquired)	(0.008) -0.002	(0.009) -0.004	(0.011) -0.011	
.()	(0.004)	(0.005)	(0.012)	
Observations	143,569	143,569	143,569	143,569
R-squared	0.038	0.256	0.294	0.370
Vintage FE	Υ	Υ	Υ	Υ
Age FE	Υ			
Age FE X Therapeutic Class X MOA Originator [Target Company] FE		Υ	Y Y	Y
Project FE				Υ

	${\sf Development\ Event} = 1$			
	(1)	(2)	(3)	(4)
$I(Acquired) \times I(Post) \times Overlap$	-0.037***	-0.033**	-0.029*	-0.041**
	(0.013)	(0.014)	(0.015)	(0.019)
$I(Acquired) \times I(Post)$	-0.020***	-0.016**	-0.017**	-0.024**
	(0.006)	(0.007)	(0.009)	(0.010)
$I(Acquired) \times Overlap$	0.004	0.009	0.026**	
	(800.0)	(0.009)	(0.011)	
I(Acquired)	-0.002	-0.004	-0.011	
	(0.004)	(0.005)	(0.012)	
Observations	143,569	143,569	143,569	143,569
R-squared	0.038	0.256	0.294	0.370
Vintage FE	Υ	Υ	Υ	Υ
Age FE	Υ			
Age FE X Therapeutic Class X MOA		Υ	Y	Υ
Originator [Target Company] FE			Y	
Project FE				Υ

	${\sf Development}\ {\sf Event}=1$			
	(1)	(2)	(3)	(4)
$I(Acquired) \times I(Post) \times Overlap$	-0.037***	-0.033**	-0.029*	-0.041**
I(Acquired) × I(Post)	(0.013) -0.020***	(0.014) -0.016**	(0.015) -0.017**	(0.019) -0.024**
	(0.006)	(0.007)	(0.009)	(0.010)
$I(Acquired) \times Overlap$	0.004	0.009	0.026**	
	(0.008)	(0.009)	(0.011)	
I(Acquired)	-0.002 (0.004)	-0.004 (0.005)	-0.011 (0.012)	
Observations	143,569	143,569	143,569	143,569
R-squared	0.038	0.256	0.294	0.370
Vintage FE	Υ	Υ	Υ	Υ
Age FE	Υ			
Age FE X Therapeutic Class X MOA		Υ	Υ	Υ
Originator [Target Company] FE			Υ	
Project FE				Υ

► Takeaway: "Killer acquisitions" reduce development.

▶ Propensity Reweighting

▶ Pre-trends

▶ Broader Overlap

Development Event = 1

FURTHER RESULTS: EFFECT OF COMPETITION

► Competition: number of drugs in the same therapeutic class & MOA

	(1)	(2)	(3)
	Low Competition	High Competition	Interacted
$I(Acquired) \times I(Post) \times Overlap$	-0.065**	0.017	0.017
	(0.026)	(0.035)	(0.035)
$\cdots \times$ Low Competition			-0.082*
			(0.044)
Competition Measure	Existing	g Product Competition	1
Observations	74,261	69,308	143,569
R-squared	0.415	0.399	0.408
Vintage FE	Υ	Υ	Υ
Age FE X Therapeutic Class X MOA	Υ	Υ	Υ
Project FE	Υ	Υ	Y

Development Event = 1

FURTHER RESULTS: EFFECT OF COMPETITION

► Competition: number of drugs in the same therapeutic class & MOA

	(1)	(2)	(3)
	Low Competition	High Competition	Interacted
$I(Acquired) \times I(Post) \times Overlap$	-0.065**	0.017	0.017
	(0.026)	(0.035)	(0.035)
$\cdots \times Low$ Competition			-0.082*
			(0.044)
Competition Measure	Existing	g Product Competition	า
Observations	74,261	69,308	143,569
R-squared	0.415	0.399	0.408
Vintage FE	Υ	Υ	Υ
Age FE X Therapeutic Class X MOA	Υ	Υ	Υ
Project FE	Υ	Υ	Υ

► Takeaway: "Killer acquisitions" are more likely in less competitive markets.

FURTHER RESULTS: REMAINING PATENT LIFE

	(1)	(2)
	` '	ent Event = 1
$I(Post) \times I(Near Patent Expiry)$	0.013	0.406***
	(0.133)	(0.090)
I(Post)	-0.173*	-0.210***
	(0.092)	(0.067)
Observations	6,398	6.398
R-squared	0.212	0.450
Vintage FE	Yes	Yes
Age FE	Yes	Yes
Therapeutic Class X MOA FE	Yes	Yes
Age X Therapeutic Class X MOA FE	No	Yes

FURTHER RESULTS: REMAINING PATENT LIFE

	(1) Developm	(2) ent Event $= 1$
I(Post) × I(Near Patent Expiry)	0.013	0.406***
	(0.133)	(0.090)
I(Post)	-0.173*	-0.210***
	(0.092)	(0.067)
Observations	6,398	6.398
R-squared	0.212	0.450
Vintage FE	Yes	Yes
Age FE	Yes	Yes
Therapeutic Class X MOA FE	Yes	Yes
Age X Therapeutic Class X MOA FE	No	Yes

FURTHER RESULTS: REMAINING PATENT LIFE

	(1)	(2)	
	Development Event = 1		
I(Post) × I(Near Patent Expiry)	0.013	0.406***	
	(0.133)	(0.090)	
I(Post)	-0.173*	-0.210***	
	(0.092)	(0.067)	
Observations	6,398	6.398	
R-squared	0.212	0.450	
Vintage FE	Yes	Yes	
Age FE	Yes	Yes	
Therapeutic Class X MOA FE	Yes	Yes	
Age X Therapeutic Class X MOA FE	No	Yes	

► Takeaway: "Killer acquisitions" are less likely if patents are close to expiry.

	(1)	(2)	(3)	(4)
		Acquisition = 1		
Overlap	0.626***		0.577***	
	(0.009)		(0.015)	
Overlap (Disease Only)		0.356***		0.300***
		(0.005)		(800.0)
Overlap \times Low Competition			0.088***	
			(0.019)	
Overlap (disease only) $ imes$ Low Competition				0.103***
				(0.011)
Observations	55,374	55,374	38,430	38,430
Pseudo R-squared	0.118	0.119	0.098	0.097
Deal FE	Υ	Υ	Υ	Y
Matching Method	Random Matching			
No of Deals	9,229	9,229	9,229	9,229
No of Control Deals	46,145	46,145	46,145	46,145

	(1)	(2)	(3)	(4)
	Acquisition = 1			
Overlap	0.626***		0.577***	
	(0.009)		(0.015)	
Overlap (Disease Only)		0.356***		0.300***
		(0.005)		(0.008)
Overlap \times Low Competition			0.088***	
			(0.019)	
Overlap (disease only) $ imes$ Low Competition				0.103***
				(0.011)
Observations	55,374	55,374	38,430	38,430
Pseudo R-squared	0.118	0.119	0.098	0.097
Deal FE	Υ	Υ	Υ	Υ
Matching Method	Random Matching			
No of Deals	9,229	9,229	9,229	9,229
No of Control Deals	46,145	46,145	46,145	46,145

► Takeaway: Overlap greatly increases probability of acquisition.

	(1)	(2)	(3)	(4)
		Acquisition = 1		
Overlap	0.194***		0.209***	
	(0.010)		(0.015)	
Overlap (Disease Only)		0.214***		0.200***
		(0.008)		(0.011)
Overlap \times Low Competition			-0.027	
			(0.020)	
Overlap (disease only) $ imes$ Low Competition				0.025*
				(0.015)
Observations	34,005	34,005	34,005	34,005
Pseudo R-squared	0.052	0.064	0.052	0.065
Deal FE	Υ	Υ	Υ	Υ
Matching Method	Matched by Pipeline Size			
No of Deals	9,229	9,229	9,229	9,229
No of Control Deals	46,145	46,145	46,145	46,145

	(1)	(2)	(3)	(4)
	Acquisition = 1			
Overlap	0.194***		0.209***	
	(0.010)		(0.015)	
Overlap (Disease Only)		0.214***		0.200***
		(0.008)		(0.011)
Overlap \times Low Competition			-0.027	
			(0.020)	
Overlap (disease only) $ imes$ Low Competition				0.025*
				(0.015)
Observations	34,005	34,005	34,005	34,005
Pseudo R-squared	0.052	0.064	0.052	0.065
Deal FE	Υ	Υ	Υ	Υ
Matching Method	Matched by Pipeline Size			
No of Deals	9,229	9,229	9,229	9,229
No of Control Deals	46,145	46,145	46,145	46,145

► Takeaway: Overlap greatly increases probability of acquisition.

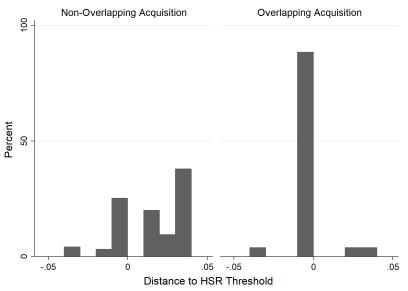
ALTERNATIVE INTERPRETATIONS

- Is lack of development is due to optimal project selection?
 - **No.** Results are unchanged for single-drug targets.
- Is lack of development is due to real termination?
 - **Yes.** Acquired projects are quickly terminated rather than just delayed.
- Are killer acquisitions technology acquisitions?
 - No. Acquirers do not re-use tech or develop molecularly similar drugs.
- Are killer acquisitions acquihires?
 - ▶ No. Most employees leave and those that stay are less productive.
- Are killer acquisitions salvage acquisitions?
 - ▶ No. There are no differences in pre-trend or acquisition values.

DISCUSSION

EARLY-STAGE ANTITRUST AND FTC REVIEW

- ► FTC Review Hart-Scott-Rodino (HSR) Antitrust Improvements Act
 - ► No report: < 50 million (as adjusted)
 - Selected report: [50, 200] million with both parties having big assets/sales
 - ► Mandatory report: > 200 million (as adjusted)
- Analysis design
 - Examine acquisitions and drug development decisions around the threshold


	5% Below Threshold	5% Above Threshold	Difference	t-statistic
Active	3.57%	7.58%	-4.00%	-1.176
Launched	1.79%	9.09%	-7.31%	-2.293**
Discontinued	94.64%	83.33%	11.31%	2.509**
N	112	66		

EARLY-STAGE ANTITRUST AND FTC REVIEW

- ► FTC Review Hart-Scott-Rodino (HSR) Antitrust Improvements Act
 - ► No report: < 50 million (as adjusted)
 - Selected report: [50, 200] million with both parties having big assets/sales
 - ► Mandatory report: > 200 million (as adjusted)
- Analysis design
 - Examine acquisitions and drug development decisions around the threshold

	5% Below Threshold	5% Above Threshold	Difference	t-statistic
Active	3.57%	7.58%	-4.00%	-1.176
Launched	1.79%	9.09%	-7.31%	-2.293**
Discontinued	94.64%	83.33%	11.31%	2.509**
N	112	66		

Do Killer Acquisitions Evade Antitrust Scrutiny?

Frequency and Importance of Killer Acquisitions

- ▶ 5.3% to 7.4% of all acquisitions are killer acquisitions
 - More than 50 acquisitions every year
 - Assumes binary type of acquisitions with overlap (pure "killer" vs non-overlapping) and equates development rate to non-overlapping acquisitions

Frequency and Importance of Killer Acquisitions

- ▶ 5.3% to 7.4% of all acquisitions are killer acquisitions
 - More than 50 acquisitions every year
 - Assumes binary type of acquisitions with overlap (pure "killer" vs non-overlapping) and equates development rate to non-overlapping acquisitions
- Eliminate all acquisitions with overlapping drugs
 - ► Average development rate for whole industry would increase by 4%
 - Assumes that development rate is the same as for non-acquired projects
 - ► Half the size of the Orphan Drug Act (13 per year)

Frequency and Importance of Killer Acquisitions

- ▶ 5.3% to 7.4% of all acquisitions are killer acquisitions
 - More than 50 acquisitions every year
 - Assumes binary type of acquisitions with overlap (pure "killer" vs non-overlapping) and equates development rate to non-overlapping acquisitions
- ► Eliminate all acquisitions with overlapping drugs
 - ► Average development rate for whole industry would increase by 4%
 - ▶ Assumes that development rate is the same as for non-acquired projects
 - ► Half the size of the Orphan Drug Act (13 per year)
- ► Impact of killer acquisitions is larger than pay-for-delay

- [x] Reduce consumer surplus
 - ► Higher prices and loss of variety—lowering consumer surplus

- [x] Reduce consumer surplus
 - ► Higher prices and loss of variety—lowering consumer surplus
- - ► Additional acquisition channel may spur drug project origination
 - ▶ Overall effect depends on elasticity of entrepreneur's idea generation
 - ▶ ... but there are less inefficient ways to encourage new ideas!

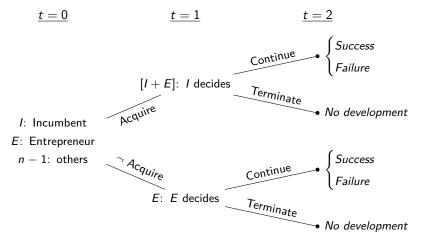
- Reduce consumer surplus
 - ► Higher prices and loss of variety—lowering consumer surplus
- Increase ex-ante incentives for innovation
 - Additional acquisition channel may spur drug project origination
 - Overall effect depends on elasticity of entrepreneur's idea generation
 - but there are less inefficient ways to encourage new ideas!
- Eliminate excess entry
 - ► Eliminate duplication of development costs (Mankiw & Whinston 1986)
 - ... but only relevant in markets with many existing incumbents anyway!

- Reduce consumer surplus
 - ► Higher prices and loss of variety—lowering consumer surplus
- Increase ex-ante incentives for innovation
 - Additional acquisition channel may spur drug project origination
 - Overall effect depends on elasticity of entrepreneur's idea generation
 - but there are less inefficient ways to encourage new ideas!
- Eliminate excess entry
 - ► Eliminate duplication of development costs (Mankiw & Whinston 1986)
 - ... but only relevant in markets with many existing incumbents anyway!
- Distort direction of innovation
 - Originate excessively similar "me-too" drug projects (entry for buyout)
 - ▶ Without killer acquisitions entrepreneurs would focus effort elsewhere!

CONCLUSION

CONCLUDING REMARKS

- ► What this paper says
 - Incumbents acquire entrepreneurial targets and terminate innovation
 - ▶ Particularly when products overlap and there is little competition
- ► What this paper does **not** say
 - ► All acquisitions are "killer acquisitions"
 - ► Killer acquisitions are necessarily welfare-reducing
- ► Our results have implications for
 - ► Antitrust policy
 - ► Startup exit
 - Creative destruction


KILLER ACQUISITIONS

Colleen Cunningham[†] Florian Ederer[‡] Song Ma[‡]

[†]London Business School [‡]Yale School of Management

Autoridade da Concorrência Webinar

SETUP AND TIMELINE

PRODUCT MARKET COMPETITION (t=2)

- ightharpoonup ¬acq: Entrepreneur remained independent
 - Killed project or failed development
 - E: $\pi(n,0)$ I: $\pi(n,1)$
 - Successful development
 - E: $\pi(n+1,1)$ I: $\pi(n+1,1)$

PRODUCT MARKET COMPETITION (t = 2)

- ► ¬acq: Entrepreneur remained independent
 - Killed project or failed development
 - Successful development
 - \triangleright E: $\pi(n+1,1)$ I: $\pi(n+1,1)$
- acq: Incumbent acquired entrepreneur at previous date
 - Killed project or failed development
 - ightharpoonup E: n/a I: $\pi(n,1)$
 - Successful development

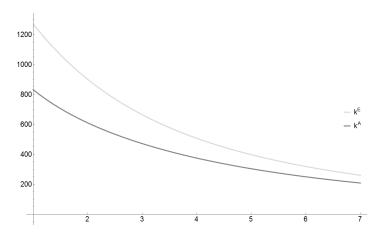
 - E: n/a I: $\pi(n+1,2)$

PRODUCT MARKET COMPETITION (t = 2)

- ► ¬acq: Entrepreneur remained independent
 - Killed project or failed development
 - Successful development
 - \triangleright E: $\pi(n+1,1)$ I: $\pi(n+1,1)$
- acq: Incumbent acquired entrepreneur at previous date
 - Killed project or failed development
 - ightharpoonup E: n/a I: $\pi(n,1)$
 - Successful development
- Setup is quite general
 - ▶ But, specifically, differentiated Bertrand (or Cournot) competition with linear demands, $0 < \gamma < \beta$ captures product homogeneity
 - Old and new products are the same, but easy to relax this assumption

Continuation Decision (t=1)

- ► ¬acq: Entrepreneur remained independent
 - ▶ Continue development if $\rho[\pi(n+1,1)-\pi(n,0)]-k \geq L$
 - $lackbox{\Delta}^E \equiv \pi(n+1,1) \pi(n,0)$ is *E*'s marginal innovation benefit
 - ▶ Decision rule: continue if and only if $k \le k^E$


Continuation Decision (t=1)

- ightharpoonup ¬acq: Entrepreneur remained independent
 - ▶ Continue development if $\rho[\pi(n+1,1)-\pi(n,0)]-k \geq L$
 - lacktriangledown $\Delta^E \equiv \pi(n+1,1) \pi(n,0)$ is E's marginal innovation benefit
 - ▶ Decision rule: continue if and only if $k \le k^E$
- ► acq: Incumbent acquired entrepreneur
 - ▶ Continue development if $\rho[\pi(n+1,2)-\pi(n,1)]-k \geq L$
 - $ightharpoonup \Delta' \equiv \pi(n+1,2) \pi(n,1)$ is I's marginal innovation benefit
 - ▶ Decision rule: continue if and only if $k \le k^I$

Continuation Decision (t=1)

- ▶ ¬acq: Entrepreneur remained independent
 - ▶ Continue development if $\rho[\pi(n+1,1)-\pi(n,0)]-k \geq L$
 - lacktriangledown $\Delta^E \equiv \pi(n+1,1) \pi(n,0)$ is E's marginal innovation benefit
 - ▶ Decision rule: continue if and only if $k \le k^E$
- acq: Incumbent acquired entrepreneur
 - ► Continue development if $\rho[\pi(n+1,2)-\pi(n,1)]-k \geq L$
 - $ightharpoonup \Delta' \equiv \pi(n+1,2) \pi(n,1)$ is I's marginal innovation benefit
 - ▶ Decision rule: continue if and only if $k \le k^I$
- Arrow's (1962) replacement effect
 - $lackbox{}\Delta^{\it E}-\Delta^{\it I}$ is the difference in marginal innovation benefits
 - Equal to 0 iff $\gamma = \{0, \beta\}, > 0$ otherwise, thus $k^E > k^I$
 - ▶ Development decision rules differ in region $[k^I, k^E]$

COMPETITION AND CONTINUATION

ACQUISITION REGIONS

- $ightharpoonup k > k^E$
 - E and I kill the project $(d^E = d^I = 0)$
 - Acquire if $\sigma \ge 0$

Acquisition Regions

- \triangleright $k > k^E$
 - ightharpoonup E and I kill the project $(d^E = d^I = 0)$
 - ightharpoonup Acquire if $\sigma > 0$
- \triangleright $k^E > k > k^I$
 - \blacktriangleright E continues ($d^E = 1$), but I kills the project ($d^I = 0$)
 - Acquire if $\sigma + \rho(\pi(n,1) \pi(n+1,1)) \ge (\rho\Delta^E k L)$ prevent cannibalization

▶ Back

valuation difference

ACQUISITION REGIONS

- \triangleright $k > k^E$
 - E and I kill the project $(d^E = d^I = 0)$
 - Acquire if $\sigma \geq 0$
- $\triangleright k^E > k > k^I$
 - ▶ *E* continues ($d^E = 1$), but *I* kills the project ($d^I = 0$)
 - Acquire if $\sigma + \underbrace{\rho(\pi(n,1) \pi(n+1,1))}_{\text{prevent cannibalization}} \ge \underbrace{(\rho \Delta^E k L)}_{\text{valuation difference}}$
- k' > k'
 - ightharpoonup E and I continue project ($d^E = d^I = 1$)
 - Acquire if $\sigma + \underbrace{\rho(\pi(n+1,2) \pi(n,1))}_{G_{\sigma}} \ge \underbrace{\rho(\Delta^{\mathcal{E}} \Delta^{\mathcal{I}})}_{G_{\sigma}}$

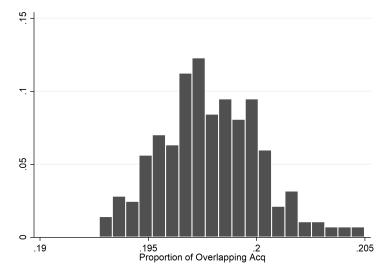
soften cannibalization

valuation difference

▶ Back

DISCUSSION OF THE EMPIRICAL APPROACH

- Goal of our empirical analysis
 - Back out firms' (killer acquisition) motive from observable outcomes
 - ► Analyzing "randomly assigned" acquisitions is not meaningful
- ► Challenge (as a detective)
 - ▶ Observing an acquisition does not tell us what type of acquisition it is
 - ▶ Observing an acquisition + discontinuation does not either (euthanasia)
- Our approach: compare overlapping and non-overlapping acquisitions
 - ▶ Overlapping: combination of "killing" and "development" motives
 - ► Non-overlapping: only "development" motives
 - ▶ **Difference**: existence/size of the "killing" motive


▶ Back

WHAT RANDOM VARIATION COULD WE USE?

- ► Random variation?
 - Deal-level variation: may not be the most appropriate
 - ► Aggregate variation: can help "identify" the aggregate effects
- ▶ Logic: shock the "benefit" of killer acquisitions at the aggregate level
 - Shock to the benefit of suppressing competition for some firms
 - Outcomes: aggregate acquisition level; post acquisition continuation
- Which aggregate shocks alter the intention to "kill"?
 - Short answer: no perfect shock yet
 - Candidates:
 - Medicare prescription drug coverage
 - Sudden discovery of new technologies
 - ► FDA public health advisories to competing drugs

RANDOMIZATION TEST OF OVERLAPPING ACQUISITIONS

"Pre-trend"

	${\sf Continuation\ Event} = 1$			
d[t-3] \times Overlap	-0.011	-0.011	-0.005	-0.031
	(-0.476)	(-0.369)	(-0.176)	(-0.982)
$d[t-2] \times Overlap$	-0.025	0.015	0.024	0.012
	(-1.068)	(0.513)	(0.793)	(0.381)
$d[t-1] \times Overlap$	-0.043**	-0.022	-0.018	-0.040
	(-1.988)	(-0.855)	(-0.690)	(-1.355)
d[t-3]	-0.001	0.010	0.013	0.015
	(-0.112)	(0.607)	(0.768)	(0.862)
d[t-2]	0.008	0.017	0.018	0.020
	(0.721)	(1.118)	(1.128)	(1.178)
d[t-1]	-0.010	-0.002	-0.000	-0.003
	(-0.993)	(-0.124)	(-0.030)	(-0.171)
Other variables		Omi	tted	
Observations	143,569	143,569	143,569	143,569
R-squared	0.038	0.256	0.294	0.370
Vintage FE	Υ	Υ	Y	Υ
Age FE	Υ			
Age FE X Therapeutic Class X MOA		Υ	Υ	Υ
Originator [Target Company] FE			Υ	
Project FE				Υ

MAIN RESULT: "OVERLAPPING" DEFINITION

	(1)	(2)	(3)	(4)
		Developmen	t Event = 1	
$I(Acquired) \times I(Post) \times Overlap (TC\text{-}MOA)$	-0.052*** (0.014)	-0.037** (0.015)	-0.036** (0.016)	-0.051** (0.020)
$I(Acquired) \times I(Post) \times Overlap \; (TC)$	-0.046*** (0.012)	-0.018 (0.017)	-0.022 (0.018)	-0.036* (0.021)
$I(Acquired) \times I(Post)$	-0.005 (0.007)	-0.012 (0.009)	-0.010 (0.010)	-0.013 (0.012)
$I(Acquired) \times Overlap (TC\text{-}MOA)$	0.009	0.007	0.034**	(0.012)
$I(Acquired) \times Overlap \; (TC)$	(0.008)	(0.009) -0.007	(0.013)	
I(Acquired)	(0.007) -0.007	(0.010) -0.001	(0.013) -0.015	
	(0.005)	(0.006)	(0.013)	
Observations	143,569	143,569	143,569	143,569
R-squared	0.037 Y	0.252 Y	0.289 Y	0.366
Vintage FE Age FE	Ϋ́Υ	Y	Y	
Age FE × TC × MOA	•	Υ	Υ	Υ
Originator [Target company] FE Project FE			Y	Υ

MAIN RESULT: "OVERLAPPING" DEFINITION

	(1)	(2)	(3)	(4)
		Developmen	t Event = 1	
$I(Acquired) \times I(Post) \times Overlap (TC\text{-}MOA)$	-0.052*** (0.014)	-0.037** (0.015)	-0.036** (0.016)	-0.051** (0.020)
$I(Acquired) \times I(Post) \times Overlap \; (TC)$	-0.046*** (0.012)	-0.018 (0.017)	-0.022 (0.018)	-0.036* (0.021)
$I(Acquired) \times I(Post)$	-0.005 (0.007)	-0.012 (0.009)	-0.010 (0.010)	-0.013 (0.012)
$I(Acquired) \times Overlap (TC\text{-}MOA)$	0.009	0.007	0.034**	(0.012)
$I(Acquired) \times Overlap \; (TC)$	(0.008)	(0.009) -0.007	(0.013)	
I(Acquired)	(0.007) -0.007	(0.010) -0.001	(0.013) -0.015	
	(0.005)	(0.006)	(0.013)	
Observations	143,569	143,569	143,569	143,569
R-squared	0.037 Y	0.252 Y	0.289 Y	0.366
Vintage FE Age FE	Ϋ́Υ	Y	Y	
Age FE × TC × MOA	•	Υ	Υ	Υ
Originator [Target company] FE Project FE			Y	Υ

► Takeaway: "Killer acquisitions" exist for broader overlapping definitions.

FURTHER RESULTS: CLINICAL TRIALS (FROM PHASE I TO PHASE II)

	$Phase\;II=1$				
	(1)	(2)	(3)	(4)	
		Low Competition	High Competition	Interacted	
I(Acq'd by Overlapping Firms)	-0.177*** (0.028)	-0.356*** (0.071)	-0.142*** (0.031)	-0.126*** (0.030)	
$\cdots \times Low$ Competition				-0.221*** (0.077)	
Competition Measure	Existing Product				
Observations	1,860	511	1,348	1,860	
R-squared	0.151	0.286	0.156	0.161	
Phase I Start Year FE	Υ	Υ	Υ	Υ	

FURTHER RESULTS: CLINICAL TRIALS (FROM PHASE I TO PHASE II)

	Phase $II=1$				
	(1)	(2)	(3)	(4)	
		Low Competition	High Competition	Interacted	
I(Acq'd by Overlapping Firms)	-0.177***	-0.356***	-0.142***	-0.126***	
	(0.028)	(0.071)	(0.031)	(0.030)	
$\cdots \times Low$ Competition				-0.221***	
				(0.077)	
Competition Measure		Existing	Product		
Observations	1,860	511	1,348	1,860	
R-squared	0.151	0.286	0.156	0.161	
Phase I Start Year FE	Υ	Υ	Y	Υ	

▶ Back

FURTHER RESULTS: CLINICAL TRIALS (FROM PHASE I TO PHASE II)

	$Phase\;II=1$					
	(1)	(2)	(3)	(4)		
		Low Competition	High Competition	Interacted		
I(Acq'd by Overlapping Firms)	-0.177***	-0.356***	-0.142***	-0.126***		
	(0.028)	(0.071)	(0.031)	(0.030)		
$\cdots \times Low$ Competition				-0.221***		
				(0.077)		
Competition Measure		Existing Product				
Observations	1,860	511	1,348	1,860		
R-squared	0.151	0.286	0.156	0.161		
Phase I Start Year FE	Υ	Υ	Υ	Υ		

► Takeaway: Acquired overlapping projects are less likely to reach Phase II.

▶ Back

ALTERNATIVE INTERPRETATIONS

ALTERNATIVE INTERPRETATIONS

- Is lack of development due to optimal project selection.
 - ▶ No. Results are unchanged for single-drug targets.

ALTERNATIVE INTERPRETATIONS

- Is lack of development due to optimal project selection.
 - ▶ No. Results are unchanged for single-drug targets.
- ▶ Is lack of development due to real termination?
- Are killer acquisitions technology acquisitions?
- ► Are killer acquisitions acquihires?
- Are killer acquisitions salvage acquisitions?

ACTUAL TERMINATION

- ► A purposefully terminated project should incur no post-acquisition development events
 - Focus only on the sample of acquired projects and examine whether they incur any development events post-acquisition
 - ► Post-acquisition, overlapping projects are 32.9 percentage points (54%) more likely to have no development events than non-overlapping projects

ACTUAL TERMINATION

- ► A purposefully terminated project should incur no post-acquisition development events
 - Focus only on the sample of acquired projects and examine whether they incur any development events post-acquisition
 - ► Post-acquisition, overlapping projects are 32.9 percentage points (54%) more likely to have no development events than non-overlapping projects
- ► Confirm that main results are driven by acquired terminated projects
 - ▶ Re-run our main analyses but take out the "never-developed" projects
 - ► No significant differences in likelihood of development events between acquired-overlap and acquired-non-overlap projects

ALTERNATIVE SPECIFICATIONS

	(1)	(2)	(3)
	Developr	ment Event =1	${\color{red}No}\;Development=1$
$I(Acquired) \times I(Post) \times Overlap$	-0.050**	0.005	0.149***
	(0.023)	(0.035)	(0.033)
$I(Acquired) \times I(Post)$	-0.024	-0.095***	0.401***
	(0.015)	(0.013)	(0.021)
Observations	27,784	7,916	9,227
R-squared	0.445	0.155	0.47
Sample:	Acquired Projects	w/o "never developed"	Acquired Projects
Therapeutic X MOA FE			Υ
Age X Therapeutic X MOA FE	Υ	Υ	
Project FE	Υ	Υ	Υ

REDEPLOYMENT OF TECHNOLOGIES

- Another alternative explanation is "project killed, technology re-used"
 - Do acquirers redeploy technologies from killed projects?

	(1)	(2)	(3)	(4)	(5)	(6)
	Che	emical Simil	arity	Citation to Targets		gets
$I(Post) \times Overlap$	0.001	0.000	0.002	-0.002	-0.002	-0.000
	(0.481)	(0.111)	(0.872)	(-1.078)	(-1.052)	(-0.788)
I(Post)	-0.002	-0.001	-0.004	0.000	0.001	-0.000
	(-0.609)	(-0.295)	(-1.364)	(0.056)	(0.931)	(-0.005)
Overlap	0.004	0.004		0.002	0.002	
	(1.263)	(1.206)		(1.078)	(0.929)	
Observations	154,896	154,896	154,896	154,896	154,896	154,896
R-squared	0.001	0.014	0.361	0.001	0.094	0.154
Acquirer FE	No	Yes	No	No	Yes	No
Case FE	No	No	Yes	No	No	Yes

Mobility and Productivity of Human Capital

- Another alternative explanation is "human capital >> project"
 - Not necessarily true in pharmaceutical and medical device industry (Gompers et al., 2017) because the project itself is key
 - Inventor data allow analysis on human capital mobility and productivity

	Before Acquisition	After Acquisition	Difference
Those Who Move to Acquirer After Acquisition (22%)	4.572	3.160	-1.412***
Those Who Move to Other Firms After Acquisition (78%)	4.357	4.089	-0.267*
Difference	-0.215	0.929***	1.144***

Mobility and Productivity of Human Capital

- Another alternative explanation is "human capital >> project"
 - Not necessarily true in pharmaceutical and medical device industry (Gompers et al., 2017) because the project itself is key
 - Inventor data allow analysis on human capital mobility and productivity

	Before Acquisition	After Acquisition	Difference
Those Who Move to Acquirer After Acquisition (22%)	4.572	3.160	-1.412***
Those Who Move to Other Firms After Acquisition (78%)	4.357	4.089	-0.267*
Difference	-0.215	0.929***	1.144***

Mobility and Productivity of Human Capital

- Another alternative explanation is "human capital >> project"
 - ► Not necessarily true in pharmaceutical and medical device industry (Gompers et al., 2017) because the project itself is key
 - Inventor data allow analysis on human capital mobility and productivity

	Before Acquisition	After Acquisition	Difference
Those Who Move to Acquirer After Acquisition (22%)	4.572	3.160	-1.412***
Those Who Move to Other Firms After Acquisition (78%)	4.357	4.089	-0.267*
Difference	-0.215	0.929***	1.144***

SALVAGE ACQUISITIONS?

- ► Another alternative explanation is "salvage" of dead/dying projects
 - ▶ No significant pre-trend difference in development for overlap acquisitions
 - ▶ Plus: overlapping acquisitions are not significantly cheaper

	(1)	(2)	(3)
	Ln(A	cquisition \	/alue)
Overlap	0.126	0.025	-0.082
	(0.101)	(0.067)	(0.114)
Observations	14,660	14,660	14,660
R-squared	0.844	0.905	0.940
Acquirer FE	Υ	Υ	Υ
Age FE	Υ	Υ	
Therapeutic Class X MOA FE		Υ	
Age X Therapeutic Class X MOA FE			Υ